If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+14x-158=0
a = 4; b = 14; c = -158;
Δ = b2-4ac
Δ = 142-4·4·(-158)
Δ = 2724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2724}=\sqrt{4*681}=\sqrt{4}*\sqrt{681}=2\sqrt{681}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{681}}{2*4}=\frac{-14-2\sqrt{681}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{681}}{2*4}=\frac{-14+2\sqrt{681}}{8} $
| 75/y+9=21,5 | | 4/3^x=4/9 | | 1/3(x+6)=2x | | 3+1p=24 | | 232=19-v | | 13x+7=7=8x+27 | | 1/3(x+6)=10 | | R(x)=15+144x-4x^2 | | 7g+5=3g+5+4g | | 19-v=232 | | 16×8y=1152÷y | | 6g+5=3g+5+4g+g | | 5^x+4=1/25 | | 4^2x-3=8 | | 7n+4=28 | | f/3.2=-2.1 | | 7x=-8+9x | | 2.8x+12=−1.4x−9 | | 2x+2x+(5+2x)=17 | | X+2/5x=91 | | 2.8x+12=−1.4x−9. | | 8m+7=9m+8 | | 10x=3+9x | | 2x+2x+5(2x)=17 | | 2/x+8=8.25 | | (-2h+9)(9h-2)=(−2h+9)(9h−2) | | -8x-40=48 | | -6-5x=-3x | | 6x-9=-9x | | -9x+36=-45 | | −6=−0.4k | | 0.3x+61+0.1x+43=180 |